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Abstract
We investigate non-equilibrium transport properties in a series of quantum dots
in which the Kondo resonance is influenced by the coupling between dots.
Based on the Anderson Hamiltonian in the strongly interacting limit, we show
the splitting of the Kondo resonance at the Fermi surface and the appearance of
negative differential conductance when the magnitude of the interdot coupling
is in the order of the coupling between the dots and the leads. We illustrate
the relationship between the negative differential conductance and the local
densities of states at the dots under different biases. We also show the profile
of energies of dots in the series when a finite bias is applied. Furthermore, the
differences in transport properties between even and odd numbers of quantum
dots in the series are investigated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Because of a strong antiferromagnetic interaction between conduction band electrons in
electrodes and localized spin in quantum dots (QDs) via high-order hopping processes, the
Kondo effect, characterized by resonant tunnelling at the Fermi surface, is often observed in
systems with a QD embedded between two electrodes. As a consequence, the conductance is
enhanced below the characteristic temperature, the Kondo temperature TK [1, 2]. Recently, the
Kondo effect in novel systems, such as quantum dots, quantum wires, and carbon nanotubes,
has been extensively studied both theoretically and experimentally. The phenomena predicted
by early theories [3, 4] have been successfully observed in experiments [1, 2]. The related
phenomena, such as the Coulomb blockade transport, and the interplay between the Kondo
effect with other physical factors, such as the Aharanov–Bohm effect, the Fano effect, and the
Josephson effect, have also been investigated [5–10]. The phenomena related to such interplay
are expected to be observed in more complicated systems and at lower temperatures. Recent
progress in experimental technique seems to make it possible to realize the required conditions.

The transport properties of coupled quantum dots have also attracted much attention. Aono
and co-workers [11–13] and Georges and Meir [14] employed an infinite-U slave-boson mean-
field theory to investigate the interplay between the Kondo effect and the antiferromagnetic
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correlation. Aguado and Langreth [15] generalized this method to an out-of-equilibrium
situation. Izumida and Sakai investigated the tunnelling conductance through two QDs by
using the numerical renormalization group (NRG) method [16]. Büsser et al calculated
the conductance and spin–spin correlation of two QDs by numerical diagonalization [17].
It is revealed that in a coupled double-dot system the conductance is characterized by the
competition between the dot–dot tunnelling coupling and the level broadening in the dots
governed by the dot–lead coupling. The Kondo resonance peak may be split when the dot–dot
coupling, which leads to the formation of ‘molecular’ levels, is larger than the level broadening.
Sánchez and Lópezthe investigated the non-equilibrium transport properties of a three-terminal
QD [18]. The transport properties near equilibrium in series of three or four quantum dots at
low temperatures have recently been theoretically studied [19]. Experimentally, the split of the
Kondo peak in the dI/dV –V curves was observed in recent measurements [20–22].

To explore the effect of interplay between the Kondo resonance and the interdot hopping,
knowledge of the non-equilibrium properties, such as the dependence of the differential
conductance on the bias voltage, and the spectral density away from the Fermi level, is
necessary. One may ask certain questions, namely, to what extent is the many-body Kondo
state robust against the interdot tunnelling processes in systems with many QDs, and how does
the number of quantum dots influence the non-equilibrium transport properties? To answer
these questions, in this paper we consider several series of QDs with a single energy level ε0

and interdot coupling t attached to two leads. Interdot coupling lifts the energy degeneracy,
yielding a spreading of energy levels in the range ε0 ± t . When t is greater than the width of the
Kondo resonance �, the resonance peak of the spectral density at the Fermi surface is expected
to be broadened and to exhibit a splitting. Similarly, in the case of strong interaction one can
also expect the conductance to be affected by the combined effect of the leads and the interdot
coupling when the coupling t is the order of the dot–lead hopping. Compared with the results
of the double-dot system, near equilibrium the effect of changing the dot–dot coupling on the
Kondo resonance is different for odd and even dot numbers, while in non-equilibrium more
structures appear in the curves of differential conductance versus the bias voltage if the number
of dots is larger than 2 and the dot–dot coupling is stronger than the level broadening.

2. Model

The purpose of the present work is to investigate the non-equilibrium transport through a series
of M quantum dots in the limit of strong on-site Coulomb interaction U → ∞ coupled via
hopping Vkα to two reservoirs labelled by α = {L, R} with chemical potentials μL and μR .
We adopt the infinite-U slave-boson mean-field (SBMF) method [15, 23] by introducing the
slave-boson operator b†

j (b j) that creates (annihilates) an empty state and the pseudofermion

operator f †
jσ ( f jσ ) that creates (annihilates) a singly occupied states with spin σ in dot j . The

annihilation operator of an electron in dot j is c jσ = b†
j f jσ . To eliminate the possibility of

double occupancy we impose the constraint
∑

σ f †
jσ f jσ + b†

j b j = 1. Hence, the Hamiltonian
of M quantum dots connected to leads is written as

H =
∑

kασ

εkασ c†
kασ ckασ +

M∑

i=1

∑

σ

ε0 f †
iσ fiσ + 1√

N

∑

kσ

(VkL c†
kLσ b†

1 f1σ

+ VkRc†
kRσ b†

M fMσ + H.c.) + 1

N

M−1∑

j=1

∑

σ

(t f †
j+1σ b j+1b†

j f jσ + H.c.)

+
M∑

j=1

λ j (b
†
j b j +

∑

σ

f †
jσ f jσ − 1), (1)
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where c†
kασ (ckασ ) is the creation (annihilation) operator for an electron in state k with spin

σ = {↑,↓} in lead α. The last term is from the single-occupation constraints in QDs js with
associated Lagrange multipliers λ j s. ε0 is the energy level in QDs and t is the interdot coupling.
For a realistic system the Coulomb repulsion U is finite, but if U is much larger than the dot–
lead coupling, the deviation from the result of infinite U is only a small quantity proportional
to the square of the ratio of the dot–lead coupling strength to U .

The solution of Hamiltonian (1) can be found by the use of the SBMF approach, which is
an approximation to the leading terms in the 1/N expansion, with an extension to deal with the
non-equilibrium situations [15, 23]. The bosonic operators b j s are replaced by their expectation
values, b̃ j = 〈b j (t)〉/N . Here N = 2 is the fold of the Hamiltonian. By calculating the
equation of motion and taking into account the constraints, we arrive at
∑

kσ

Ṽk,L ,σ G<
Lσ,1σ (t, t) + t

∣
∣
∣b̃1

∣
∣
∣
∣
∣
∣b̃2

∣
∣
∣ G<

2σ,1σ (t, t) = −iNλ1

∣
∣
∣b̃1

∣
∣
∣
2
, (2)

∑

kσ

Ṽk,R,σ G<
Rσ,Mσ (t, t) + t

∣
∣
∣b̃M−1

∣
∣
∣
∣
∣
∣b̃M

∣
∣
∣ G<

M−1σ,Mσ (t, t) = −iNλM

∣
∣
∣b̃M

∣
∣
∣
2
, (3)

t
∣
∣
∣b̃ j−1

∣
∣
∣
∣
∣
∣b̃ j

∣
∣
∣ G<

j−1σ, jσ (t, t) + t
∣
∣
∣b̃ j+1

∣
∣
∣
∣
∣
∣b̃ j

∣
∣
∣ G<

j+1σ, jσ (t, t) = −iNλ j

∣
∣
∣b̃ j

∣
∣
∣
2

for j 	= 1, M, (4)
∑

σ

G<
jσ, jσ (t, t) = i

(

1 − N
∣
∣
∣b̃ j

∣
∣
∣
2
)

. (5)

Here, we define the symbol Ṽk,L(R),σ = |b1(N)|Vk,L(R),σ , the Green function G<
Lσ,1σ (t, t) =

i〈c†
kLσ (t) f1σ (t)〉 and G<

pσ,qσ (t, t) = i〈 f †
pσ (t) fqσ (t)〉, with p and q being labels of QDs.

G<
pσ,qσ (ε) is the Fourier transform of G<

pσ,qσ (t, t), which can be viewed as elements of an
M × M matrix G<

σ (ε).
The Green function G<

σ (ε) can be calculated from the Keldysh equation [24]:

G<
σ (ε) = GR

σ (ε)�<
σ GA

σ , (6)

where GR(A)
σ (ε) is the retarded (advanced) Green function in the quantum dot regime

represented in the form of an M × M matrix. GR(A)
σ (ε) can be calculated with the help of

the equation of motion of the operators [24, 25]. �<
σ is the M × M self-energy matrix, and its

matrix elements are

�<
pσ,qσ = i�̃σ

L fL (ε), for p = q = 1, (7)

�<
pσ,qσ = i�̃σ

R fR(ε), for p = q = M, (8)

�<
pσ,qσ = 0, otherwise, (9)

where �̃σ
L(R) = |b̃1(M)|2�σ

L(R) is the renormalized coupling between the L(R) lead and the QDs
with �σ

L(R) = 2π i
∑

k |VkL(R)σ |2δ(ε − εkL(R)σ ), and fL(R)(ε) is the Fermi statistical function in
lead L(R). In what follows, �σ

L(R) is taken as a constant for −D � ε � D. It has been assumed
that the lower and upper edges of the electron band at zero bias are −D and D, respectively.
G<

L(R)σ,1σ (ε), the Fourier transform of G<
L(R)σ,1σ (t, t), can be cast in terms of G<

σ (ε):

G<
Lσ,1σ (ε) = Ṽk,L ,σ [GR

1σ,1σ (ε)g<
kL ,σ (ε) + G<

1σ,1σ gA
kL ,σ (ε)], (10)

G<
Rσ,1σ (ε) = Ṽk,R,σ [GR

Mσ,Mσ (ε)g<
kR,σ (ε) + G<

Mσ,Mσ gA
kR,σ (ε)], (11)

where the Green function g<,A
kL(R)α,σ (ε) for the leads is defined as

g<
kL(R),σ (ε) = 2π iδ(ε − εkL(R),σ ) fL(R)(ε), (12)
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Figure 1. Interdot-hopping dependence of the linear conductance in cases with different numbers
of quantum dots.

∑

k

gA
kL(R),σ (ε) = i

2
�σ

L(R). (13)

Equations (2)–(5) form a closed set of 2M equations for 2M unknowns (b̃1, b̃2, . . . , b̃M and
λ1, λ2, . . . ,−λM ). These equations are nonlinear and need a self-consistent solving. In this
paper we perform the numerical calculation by the use of the gradient algorithm. From the
solution of equations (2)–(5), we can calculate the current crossing the dots:

I = (−e/π h̄) Im
∑

σ

�σ
L

∫

[2Gr
1σ,1σ (ε) fL (ε) + G<

1σ,1σ (ε)] dε. (14)

In the next section we will mainly present the non-equilibrium results for μL = −μR =
eV/2, with parameters �

↑
L = �

↓
L = �

↑
R = �

↓
R = �/2, and ε0 = −2�. The Kondo temperature

of the QD is about 10−1�. The energy zero is set at the Fermi surface EF = 0. Hereafter we
will use � as the energy unit.

3. Results and discussion

In a double-dot system the competition between the interdot hopping and dot–lead coupling
plays an important role in the transport near equilibrium [12]. In order to illustrate the interplay
between the Kondo effect and the interdot hopping in the case of multiple dots, in figure 1 we
show the interdot-hopping dependence of the linear conductance at a given renormalized dot–
lead coupling (� = 1) in cases of different numbers of QDs. One can see two scenarios when
the interdot hopping increases. For M = 3 and 5, G reaches a maximum at around t 
 0.
When t increases, G decreases slowly and then grows after a minimum. For M = 2 and 4,
G increases from zero and reaches a maximum at around t = 1 and then decreases. When
t increases further the curve becomes increasing again. In the case of M = 2, the previous
results show that G decreases with t for large t in the case of finite U [16, 17, 26], but this
dependence is reversed at the limit U → ∞. This is consistent with the present results for all
investigated M at the limit U → ∞. The similarity for M = 2 and M = 4 or for M = 3 and
M = 5 in the whole range of t can be explained from the following simple picture: at the linear
limit the conductance can be written as G = 2e2

h 4|G1,M |2. In the case of odd dots (M = 3
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(a)

(c) (d)

(b)

Figure 2. Differential conductance G versus bias voltage eV for different values of interdot hopping
t and different numbers M of QDs. t = 0.8, 1.2 and 1.5 for solid, dashed, and dotted lines,
respectively.

and M = 5) and in the Kondo regime, if the interdot hopping is not too large, the spin of the
isolated series is 1/2 and the ground state of the coupled dot–lead system is the Kondo singlet.

The conductance can be calculated as G = 2e2

h
4�̃L �̃R

(�̃L +�̃R )2 = 2e2

h because ε̃1 
 0, . . . , ε̃M 
 0 and

|Gr
1,M | = 1

�̃L +�̃R
. By increasing t , the levels are split and the Kondo resonance is weakened.

In the case of even dots (M = 2 and M = 4), the net spin of the isolated series is about zero,
leading to the vanishing Kondo resonance for small t , and the t-dependence of the conductance

can be approximately calculated as G = 2e2

h
4�̃L �̃R t2

(t2b2
1+�̃L )2 = 2e2

h
4t2

(1+t2)2 from |Gr
1,M | = t

t2b2
1+�̃L

. In

all cases the curves are not monotonic and they show some types of oscillation. In fact, the
evolution of the linear conductance in varying t shown in figure 1 is similar to the conductance
oscillations with different periods in transition-metal atomic chains revealed in [27] by using
combined ab initio and self-consistent parameterized tight-binding calculations.

In figures 2(a)–(d), we show the differential conductance G for different numbers of
quantum dots (M = 2, 3, 4, 5) and different interdot hopping strengths t = 0.8, 1.2, 1.5,

as a function of the bias voltage eV . From the dependence of G on the bias voltage one can
see how the Kondo effect is affected by the change of the interdot tunnelling t . In the case of
relatively small hopping (t = 0.8), the zero-bias peak of G does not split and it has a maximum
intensity G 
 1, representing typical Kondo resonance at the Fermi surface. On increasing
the absolute value of eV , G decreases and exhibits sharp dips associated with the negative
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differential conductance (NDC). The NDC is due to the non-coincidence of resonances of the
QDs in the series by increasing the bias. For t = 1.2, G at zero bias becomes slightly smaller
than the maximum value and the Kondo resonance peak begins to split. The value of eV at
which the NDC occurs is larger than the value in the case of t = 0.8, implying the increase
of the spacing of ‘molecular’ levels by increasing t . For t = 1.5, the peak of G between two
dips becomes even wider, and several small structures appear in the peak. As can be seen from
the comparison of figures 2(a)–(d), the increase of the number of QDs in the series leads to
stronger suppression of the resonance peak at zero bias by increasing t , which can be ascribed
to a weaker Kondo effect when more quantum dots are included and play the role of one Kondo
impurity. As a result of this weakening of the Kondo effect, the total width of the peak is also
decreased by increasing the number of dots, M . It should be noted that for the same interdot
hopping t the position where the NDC occurs strongly depends on the number of quantum
dots. When the number of QDs increases and the interdot hopping is unchanged, the non-
coincidence of resonances of QDs in the series happens in smaller bias, resulting in the smaller
value of eV at which the NDC occurs. The small structures of the peak in the case of larger t
can be attributed to the level structures of the multidot system. On increasing M , the number
of levels increases, leading to an increase of small peaks in the structures.

The structures of the zero-bias peak of the differential conductance can be further
understood as follows. Near equilibrium the renormalized energies ε̃i ≡ εi +λi on the dots are
nearly zero for all i due to the screening of the conduction electrons. From this we can derive
that the Kondo level is split into three molecular states, E1 
 0 and E2,3 
 ±√

2t b̃1b̃2, in the

case of M = 3 and is split into four molecular states, Ei=1,2,3,4 
 ±t b̃2
2±

√
t2 b̃4

2+4t2 b̃2
1 b̃2

2

2 , in the

case of M = 4. In both cases the splitting of the Kondo level is of the order of 
 ∼ 2t b̃2
1(2). A

similar result can be obtained in the case of larger M . At the same time, the width of the zero-
bias peak of the differential conductance is determined by the dot–lead coupling and is of the
order of 10−1�. So we can estimate a criterion 
 � 10−1� for the observation of the splitting
of the zero-bias peak. When the interdot hopping t is small enough, the energy splitting is
smaller than 10−1�; no splitting could be seen. When t is large, the peak of the differential
conductance at V = 0 may be suppressed. This is just the behaviour shown in figure 1.

In order to illustrate the details of spatial and energy distributions of states in the series of
QDs, in figure 3 we plot the local densities of states on the dots in the case of M = 3 with
different bias voltages and interdot hoppings. Generally there are three main peaks, denoted by
I, II, and III in figure 3(a), corresponding to the ground, the first and the second excited states,
respectively. By keeping the bias voltage and comparing the densities of states with different t ,
we can see that the spacings of these peaks increase by increasing the interdot hopping. This
behaviour can be viewed as the origin of the peak splitting in the conductance. The weights
on different dots of a given state are different due to the applied bias. Usually a state with
higher energy has larger weight on the dot attached to the lead with higher bias potential, but
the total weight of all states on the middle dot is dominant over those on the side dots. By
increasing the bias the distribution of weights for a given state among the dots becomes more
inhomogeneous. The dc conductance under a bias eV depends on the total density of states
within energy window [−eV/2, eV/2]. If it is decreased by increasing the bias, a negative
differential conductance appears. It can be seen from figure 3 that the NDC may occur at
relatively large bias voltage since for large eV the total density of states in the middle energy
range is decreased by increasing eV due to the redistribution of the state weights on the dots.

At a finite bias we calculate the differential conductance by setting a symmetric voltage
drop of two leads, i.e., μL = −μR = eV/2. The energies on the quantum dots in the series
are determined self-consistently. In order to illustrate the potential profile in the dot series in
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Local density of states in a system with three QDs for t = 0.8 ((a)–(c)) and t = 1.2
((d)–(f)) as a function of electron energy E . Solid, dashed, and dotted lines correspond to local
density of state on the left, middle, and right dots, respectively.

the non-equilibrium case, in figures 4(a) and (b) we show the renormalized energies on the dots
versus the bias applied to two leads in the case of four dots with interdot hopping t = 0.8
and 1.2, respectively. The renormalized energy at site i is defined as ε̃i = εi + λi , where
λi is the Lagrange multiplier at quantum dot i . Because of the interaction between electrons,
renormalized energies on dots depend on average occupations of electrons. On the other hand,
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Figure 4. The renormalized energies of dots versus the bias between two leads when the dot number
is four and (a) t = 0.8, (b) t = 1.2. The solid, dashed, dash–dotted, and dotted lines correspond to
the energies at dots 1, 2, 3 and 4, respectively.

the coupling to the leads tends to draw the energies of dots, especially the dots near the leads,
towards the Fermi levels of nearby leads. With the bias increasing, the renormalized energies
at dots 1 and 2 increase while those at dots 3 and 4 drop nonlinearly due to the changing of the
Fermi levels in the two leads. From the comparison of figures 4(a) and (b), we can see that by
increasing the interdot hopping the difference in energy between the side dots (1 and 4) and the
inner dots (2 and 3) decreases, reflecting the effect of the interdot hopping. On increasing the
bias, the difference in energy between dots 2 and 3 increases, implying the weakening of the
effective coupling between these two dots due to the bias.

Figures 5(a) and (b) show the curves of b̃i (the expectation value of bi ) versus the bias
between two leads in the case of four dots for t = 0.8 and 1.2, respectively. One can see that
when the bias increases, b̃1 and b̃4 increase and b̃2 and b̃3 drop, so t̃1,2 (the renormalized intradot
hopping between dot 1 and dot 2) and t̃3,4 become much larger than t̃2,3. Here, the expression
t̃i,i+1 = t b̃N b̃N+1 is adopted. Thus, by increasing the bias, we can weaken the effective linking
between two inner dots, but strengthen the links between the outer dots and the leads.
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Figure 5. The expectation value of bi versus the bias between two leads when the number of dots
is four and (a) t = 0.8, (b) t = 1.2. The solid, dashed, dash–dotted, and dotted lines correspond to
the expectation value of bi at dot i = 1, 2, 3 and 4, respectively.

4. Conclusions

Using a slave-boson mean-field theory, we have shown that the combined effect of the dot–
lead coupling and the interdot coupling in a series of quantum dots can widen and split the
Kondo resonance peak in the curves of the differential conductance versus the bias voltage in
comparison with the case of single quantum dot. When the number of dots is larger and the
magnitude of the interdot coupling is of the order of the dot–lead coupling, some structures
may appear in the Kondo resonance peak, and NDC occurs. It is also shown that the bias
voltage at which the NDC appears depends strongly on the strength of the interdot coupling
and on the number of quantum dots. It is also found that the conductance as a function of
the interdot hopping shows two different scenarios in cases of odd and even dots, due to the
different net spin of the isolated series. The obtained results may have a relation to experiments
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which investigate the differential conductance through systems which can be regarded as series
with more than one Kondo impurity. In the case of two dots, a split of the Kondo peak in
the dI/dV –V curves was observed in recent measurements [20–22]. Sharp dips due to the
negative differential conductance are still absent in the measurements; this may due to the
dephasing processes [18].
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